Where We Are and Where We Are Going: The Future of ART

Dr. Marcos Horton Co-Director and Founder Pregna Medicina Reproductiva Past-President, Argentinian Society for Reproductive Medicine Buenos Aires, Argentina

Milestones in ART: the 80's Developing the Science & the Tools

Milestones in ART: 90's & Beyond Micromanipulation, Drugs, Culture Media & Genetics

Milestones in ART: 2005-2015 Freezing, 'Omics', Time-lapse and Massive Sequencing

Milestones in ART: 2005-2015 Freezing, 'Omics', Time-lapse and Massive Sequencing

The goal is a healthy baby born from the transfer of a single, euploid embryo

Ovarian Stimulation

- Antagonists vs agonists (Al-Inany, 2011)
 - Safety First!
 - GnRH agonist trigger
- Dosing gonadotropins (La Marca & Sunkara 2011, Yates 2011)
- Poor responders (Bologna criteria, 2011)
 - No recommended protocol before BC
 - Microflare protocols?
 - Corifollitropin alfa?
 - Testosterone pretreatment?

Dosing: The "Dosogram" Based on AFC & AMH

ART Lab Improvements

- Air quality (filtered air, VOC's, positive pressure)
- Culture media (sequential, one-step, transfer)
- Incubators (tri-gas, TLS, automated controls)
- Static Morphologic grading scores + models
- Time lapse systems & morphokinetic grading
- Vitrification
- Metabolomics
- Proteomics
- Genomics

ART Lab Improvements

- Air quality (filtered air, VOC's, positive pressure)
- Culture media (sequential, one-step, transfer)
- Incubators (tri-gas, TLS, automated controls)
- Static Morphologic grading scores + models
- Time lapse systems & dynamic grading
- Vitrification
- Metabolomics
- Proteomics
- Genomics

Time-lapse Current Status

- Promising semi-quantitative and automated tool to monitor embryo development
- Does NOT disturb the embryo in culture
- Could revolutionize workflow in the ART lab
- Improves embryo selection
- Clinical use has yet to be proven

Kaser & Racowsky. Human Reproduction Update, Vol.20, No.5 pp. 617. 631, 2014

Time-lapse Ongoing Trials

Table III Summary of ongoing studies registered with the National Institutes of Health (http://clinicaltrials.gov) using time-lapse monitoring for embryo selection.

Study title	Year registered	Clinicaltrials.gov identifier	Sponsor	Location (s)	Principal investigator	Status	Design	Purpose	Completed	
Correlating Time-Lapse Parameters Detected by the	2012	NCT01635049	Auxogyn, Inc.	Reproductive Medicine Associates (USA)	Richard Scott, Jr., MD	Active, not recruiting	Prospective observational	To determine if there is a correlation between time-lapse	unpublished	
Leva''' System With Comprehensive Chromosome Screening Results, Implantation and Live Birth								parameters and comprehensive chromosome screening results.	Recruitment status unknown?	
Assessment of Implantation	2012	NCT01760278	Bloom IVF and Fertility Center	Lilavati Hospital and Research Center (India)	Hrishikesh Pai, MD	Active, not	RCT	To compare implantation potential of embryos selected by	unpublished	
Time-Lapse Technology								time-lapse to those selected by	Recruitment	
Embryo Selection by Time-Lapse Monitoring for Single Embryo Transfer	2012	NCT01694641	Kaali Institute IVF Center	Kaali Institute IVF Center (Hungary)	Peter Kovacs, MD	Recruiting	RCT	To determine whether clinical pregnancy rates using TLM are superior to conventional	status unknown? unpublished	
								morphology for single blastocyst transfer.	Completed	
Clinical Validation of Embryo Culture and Selection by Morphokinetic Analysis	2012	NCT01549262	Instituto Valenciano de Infertilidad, Spain	IVI Valencia (Spain)	Marcos Meseguer, PhD	Recruiting	RCT	To determine whether the hierarchal time-lapse model for embryo selection (Meseguer et al., 2012) improves ongoing	Aug 2014, Published F&S 11/2014	
			•					pregnancy rates compared with	Stopped	
US Eeva [™] Pregnancy Investigational Clinical Study (US EPIC)	2012	NCT01671657	Auxogyn, Inc.	Fertility Physicians of Northern California (USA)	Shehua Shen, MD	Recruiting	Case-control	To compare implantation rates for Day 3 embryo transfers using TLM plus conventional morphology versits conventional morphology	recruitment, ongoing Oct 2015	
								alone.	Completed	
Eeva TM Pregnancy Investigational Clinical Study: A Postmarket Follow-Up Study	2012	NCT01671644	Auxogyn, Inc.	Gent University Hospital (Belgium) and VU University Medical Center (Netherlands)	Shehua Shen, MD	Recruiting	Case-control	To evaluate the impact of TLM plus conventional morphology on clinical pregnancy rates, compared with a matched control	Oct 2015, unpublished	
								group using conventional morphology alone.	Stopped	
MERGE: MulticEnter ReGistry With Eeva TM	2013	NCT01816802	Auxogyn, Inc.	Multiple private and academic centers in California, Connecticut,	Shehua Shen, MD	Recruiting	Prospective observational (non-comparative	To record the clinical pregnancy rates following embryo selection with conventional morphology	recruitment, ongoing March 2015	
				and Texas (USA)	0		study)	pius i LM.		

Kaser & Racowsky. Human Reproduction Update, Vol.20, No.5 pp. 617. 631, 2014

Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope

Irene Rubio, Ph.D.,^a Arancha Galán, Ph.D.,^a Zaloa Larreategui, Ph.D.,^b Fernando Ayerdi, Ph.D.,^b Jose Bellver, M.D.,^a Javier Herrero, Ph.D.,^a and Marcos Meseguer, Ph.D.^a

^a Instituto Universitario IVI Valencia, University of Valencia, Valencia; and ^b IVI Bilbao, Bilbao, Spain

Study title	Year registered	Clinicaltrials.gov identifier	Sponsor	Location (s)	Principal investigator	Status	Design	Purpose
Correlating Time-Lapse Parameters Detected by the Eeva ¹³⁴ System With Comprehensive Ohromosome Screening Results, Implantation and Live Birth	2012	NCT01635049	Auxogn, Inc.	Reproductive Medicine Associates (USA)	Richard Scott, Jr., MD	Active, not recruiting	Prospective observational	To determine if there is a correlation between time-lapse parameters and comprehensiv chromosome screening results
Assessment of Implantation Potential of Embryos by Time-Lapse Technology	2012	NCT01760278	Bloom IVF and Fertility Center	Lilavati Hospital and Research Center (India)	Hrishikesh Pal, MD	Active, not recruiting	RCT	To compare implantation potential of embryos selected time-lapse to those selected by conventional morphology.
Embryo Selection by Time-Lapse Monitoring for Single Embryo Transfer	2012	NCT01694641	Kaali Institute IVF Center	Kaali Institute IVF Center (Hungary)	Peter Kovacs, MD	Recruiting	RCT	To determine whether clinical pregnancy rates using TLM are superior to conventional
								transfer.
Oinical Validation of Embryo Culture and Selection by Morphokinetic Analysis	2012	NCT01549262	Instituto Valenciano de Infertilidad, Scain	IVI Valencia (Spain)	Marcos Meseguer, PhD	Recruiting	RCT	To determine whether the hierarchal time lapse model to embryo selection (Mexeguer e 2012) improves opeoing
								conventional morphology.
US Eeva TH Pregnancy Investigational Clinical Study (US EPIC)	2012	NCT01671657	Auxogyn, Inc.	Fertility Physicians of Northern California (USA)	Shehua Shen, MD	Recruiting	Case-control	To compare implantation rate: Day 3 embryo transfers using 1 plus conventional morpholog versus conventional morpholo alone.
Eeva TH Pregnancy Investigational Clinical Study: A Postmarket Follow-Up Study	2012	NCT01671644	Auxogrn, Inc.	Gent University Hospital (Belgium) and VU University Medical Center (Netherlands)	Shehua Shen, MD	Recruiting	Case-control	To evaluate the impact of TLP plus conventional morpholog clinical programsy rates, compared with a matched con group using convertional morphology alone.
MERGE: MulticEnter ReGistry With Eeva TH	2013	NCT01816802	Auxogn, Inc.	Multiple private and academic centers in California, Connecticut, Illinois, New York, Ohio and Texas (USA)	Shehua Shen, MD	Recruiting	Prospective observational (non-comparative study)	To record the clinical pregnat rates following embryo select with conventional morpholog plus TLM.

RCT comparing Embryoscope (N=438) vs. <u>conventional incubator (N=405)</u>

Equal CPR's, BUT better OPR's (> 10%) and Implantation rates

Fertility & Sterility 2014 102 (5): 1287-1294

TABLE 3

Outcome results per intention to treat, per cycle, per transfers and per embryo transferred.

Outcome	TMS group	Control group	RR	P value
All cycles with oocyte retrieval Pregnancy (% of all treated cycles) Ongoing pregnancy (% of all treated cycles)	438 61.6 (56.9–66.0) 51.4 (46.7–56.0)	405 56.3 (51.4–61.0) 41.7 (37.0–46.6)	1.09 (0.98–1.23) 1.23 (1.06–1.43)	.12 .005
All transfers Pregnancy (% of all transfers) Ongoing pregnancy (% of all transfers) All pregnant cycles	415 65.3 (60.6–69.7) 54.5 (49.6–59.2) 271	373 61.1 (56.1–65.9) 45.3 (40.3–50.4) 228	1.07 (0.95–1.19) 1.20 (1.04–1.39)	.22 .01
Early pregnancy loss (% of all pregnancies) All transferred embryos Implantation rate (% of all transferred embryos)	16.6 (12.6–21.4) 775 44.9 (41.4–48.4)	25.8 (20.6–31.9) 699 37.1 (33.6–40.7)	0.64 (0.45–0.91)	.01

Note: Results shown as proportion with 95% confidence limits in brackets, relative risk (RR) with 95% confidence limits in brackets and the corresponding P value (Fisher's exact test). Total number of cycles are also presented in brackets.

Rubio. Clinical validation of EmbryoScope. Fertil Steril 2014.

TABLE 2

Descriptive characteristics of the embryo development and fate in the time-lapse and control groups.

	TMS group (n = $2,638$)	Control group (n = $2,427$)	P value
Embryo fragmentation (%) No. of blastomeres Embryo symmetry	7.5 ± 0.1 (7.2–7.9) 6.9 ± 2.3 (6.8–6.9) 1.7 ± 0.5 (1.7–1.7)	6.9 ± 9.4 (6.5–7.1) 6.9 ± 2.7 (6.8–7.0) 1.7 ± 0.5 (1.7–1.7)	.006 NS NS
Optimal embryos (day 3) (%)	46.2 (1,219) (44.3–48.1)	43.1 (1,046) (41.3–45.1)	.010
Blastocyst rate (%)	52.3 (576) (50.3–54.2)	50.5 (471) (48.5–52.5)	NS
Optimal blastocyst (day 5) (%)	20.9 (230) (19.4–22.4)	16.6 (155) (15.1–18.1)	.001
Transferred embryos Cryopreserved embryos	1.86 ± 0.37 (1.8–1.9) 3.9 ± 2.2 (3.6–4.1)	1.86 ± 0.40 (1.8–1.9) 3.6 ± 2.2 (3.4–3.9)	NS NS

Note: Values are mean, and values in brackets are 95% confidence interval or the total number of embryos.

Rubio. Clinical validation of EmbryoScope. Fertil Steril 2014.

Figure 1 Graphical representation of the published algorithm that, using morphokinetics, suggests a method for embryo selection based on implantation or chromosomal euploidy as the final outcome. Abbreviations are related with timings in hours: t, timing of cleavage from ICSI until the number of cells considered 2,3,4 etc.; cc, cell cycle duration; s, synchrony of the cell cycle. In the figure, the calculations of each of the variables used in the algorithms are described graphically.

Figure 2 Schematic of preimplantation embryo development with corresponding time-lapse markers from 9 of the 13 studies with time values reported. When there was no significant difference observed between 'implanters' and 'non-implanters', only the value for the implanted embryos is shown (in black). When significant differences were reported, the 'implanter' values are shown in green, and 'non-implanters' are in red. All values are expressed in hours, as mean \pm standard deviation or mean (95% confidence interval) for normally distributed variables, and median (minimum:maximum) for non-normally distributed variables. PN, pronuclei. Modified from Chen et *al.* (2013).

Time-lapse Systems

- Promising
- Adds valuable information regarding different checkpoints
- Variability between labs? culture media? ICSI vs. IVF
- Embryos undisturbed!
- Need further clinical validation comparing with same incubator
- Efforts are being made to unify nomenclature

Proposed nomenclature	Developmental measure	Milestone
t _o	Spermatozoön entry into oocyte (IVF or ICSI)	Time of sperm injection into oocyte (ICSI) or at which sperm head binds to oolemma (IVF)
t _{2pb}	Extrusion of the 2 nd polar body	Time that 2 nd polar body is first encircled by a complete membrane
t _{2pn}	Appearance of the two pronuclei	Time that two pronuclei are first visualized
t _{2pn.a}	Abuttal of the two pronuclei	Time that two pronuclei first remain in contact before onset of dissolution
t _l	Disappearance of the two pronuclei	Time that both pronuclei are no longer visible
$t_{cf1}, t_{cf2}, t_{cf3} \dots$	Identification of the 1^{st} , 2^{nd} , 3^{rd} etc. cytokinesis furrow	Time at which the 1 st , 2 nd , 3 rd etc. cytokinesis (cleavage) furrow is clearly distinguishable
$t_2, t_3, t_4 \dots t_{16}$	Formation of 2-cell stage, 3-cell stage, 4-cell stage, etc. through the 16-cell stage	Time at which newly formed cells are completely separated by confluent membranes
t _c	Start of compaction	Time at which membranes of adjacent blastomeres start to become indistinguishable
tm	Formation of morula	Time at which the membranes of all blastomeres are no longer distinguishable
t _{cav}	Start of cavitation	Time at which a pocket of fluid is first identified between blastomeres
t _{b.e}	Formation of early blastocyst	Time at which a single pocket of fluid (the blastocoelic cavity) first occupies less than half the volume of the embryo
t _{b.xg}	Formation of expanding blastocyst	Time at which the blastocoelic cavity first occupies more than half the volume of the embryo
t _{b.f}	Formation of full blastocyst	Time at which the blastocoelic cavity first occupies the entire volume of the embryo
t _{b.xd}	Formation of expanded blastocyst formation	Time at which the embryo first becomes fully expanded
t _{b.hg}	Formation of hatching blastocyst	Time at which the trophectoderm starts to herniate through the zona pellucida
t _{b.hd}	Formation of hatched blastocyst	Time at which the blastocyst completes escapement from the zona pellucida
$t_{b,c1}, t_{b,c2}, t_{b,c3} \dots$	Identification of blastocyst contractions	Time at which the 1 st , 2 nd , 3 rd etc. contraction of the blastocyst occurs (i.e. time of maximum shrinkage during one contraction event)
t,	Time interval	The time required for the embryo to reach a more advanced stage from a specified earlier stage*
d	Duration	This is a special case of the more general term, time interval, and indicates the time passed between two <i>consecutive</i> developmental stages*

Table IV Proposed standardized nomenclature for time-lapse markers.

* Note that to describe any time interval or duration, a user is required to define both the start and stop times. This standardization allows the annotation of any given measure of interest by using the generalized formula, $t_i = t_y - t_x$, where y is a more advanced developmental stage, and x is a defined referent that is always an earlier developmental stage. For example, the time from ICSI to hatching blastocyst is represented by $t_{b,bg} - t_0$, the duration of the first cytokinesis is $t_2 - t_{cf1}$ and the duration of the 3-cell stage is $t_4 - t_3$.

Kaser & Racowsky Human Reproduction Update 2014

Aneuploidy in Reproduction

Aneuploidy is extremely common in the early embryo

Trisomy and monosomy are present in 10% to > 50% of pregnancies, related to maternal age

Recurrent implantation failure

Recurrent miscarriage

Sperm chromosomal aneuploidies are responsible for male factor infertility

The Effect of PGS on the Live Birth Rate Per Patient

	P	33	COL	itroi				
Study or Subgroup	Events	Total	Events	Total	Weight	Risk Difference	Risk Difference, 95% CI	
Indication Advanced	Maternal	Age				M-H, Fixed, 95% Cl		
Staessen 2004	21	199	29	190	36.6%	-0.05 [-0.11, 0.02]		
Mastenbroek 2007	49	206	71	202	38.4%	-0.11 [-0.20, -0.03]		
Hardarson 2008*	3	56	10	53	10.3%	-0.14 [-0.26, -0.01]		
Schoolcraft 2008	16	32	16	30	5.8%	-0.03 [-0.28, 0.22]		
Debrock 2009	6	44	10	50	8.8%	-0.06 [-0.21, 0.09]		
Subtotal (95% CI)		537		525	100.0%	-0.08 [-0.13, -0.03]	◆	
Total events	95	(18%)	136	(26%)				
Heterogeneity: Chi ² = 2.51, df = 4 (P = 0.64); l ² = 0%								
Test for overall effect: Z = 3.38 (P = 0.0007)								
Indication Good Prog	nosis Pat	ient			N	1-H, Random, 95% CI		
Staessen 2008*	37	120	37	120	39.7%	0.00 [-0.12, 0.12]		
Jansen 2008*	20	55	27	46	33.3%	-0.22 [-0.41, -0.03]		
Meyer 2009*	6	23	15	24	26.9%	-0.36 [-0.63, -0.10]		
Subtotal (95% CI)		198		190	100.0%	-0.17 [-0.39, 0.04]		
Total events	63	(32%)	79	(42%)				
Heterogeneity: Tau ² =	0.03; Chi ²	= 8.27,	df = 2 (P	= 0.02); l² = 76%			
Test for overall effect:	Z = 1.56 (F	P = 0.12	2)					
Indication Repeated I	mplantati	on Fail	ure			M-H, Fixed, 95% CI		
Blockeel 2008	15	72	26	67	100.0%	-0.18 [-0.33, -0.03]	-	
Subtotal (95% CI)		72		67	100.0%	-0.18 [-0.33, -0.03]	\bullet	
Total events	15	(21%)	26	(39%)				
Heterogeneity: Not app	olicable	181 - BA						
Test for overall effect:	Z = 2.35 (F	P = 0.02	2)					
							Favours Control Favours PGS	

* Trial was terminated prematurely.

CI = confidence interval; M-H = Mantel-Haenszel method.

S. Mastenbroek et al. Human Reproduction Update. 2011;17:454-466

© The Author 2011. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

human reproduction update

PGS with FISH - Pitfalls & Limitations

- Technique itself (8-12 chromosomes analyzed)
- Operator experience
- D3 embryo
- No. of cells biopsied
- Mosaicism
- Low sensitivity

Comprehensive Chromosome Screening

Mosaicism (10-15%)

CCS - aCGH

CCS - SNP, QPCR & NGS

RCT - Done & Ongoing

Table II RCTs using comprehensive chromosome screening.

Authors	Female age (years)	Intervention	Eligibility	No. of cycles	% Abnormal embryos	Ongoing PR/cycle or delivery rates	MR
Yang et al., Mol Cytogenet 2012	<35	SET after blastocyst biopsy versus blastocyst transfer (Array CGH)	Young good prognosis, IVF patients, first cycle, no prior miscarriage	tients, 55 PGS 44.9% e 48 control		69.1 PGS versus 41.7 (P = 0.0009)	2.6 PGS versus 9.1 (NS)
Forman et al., Fertil Steril 2013 NCT01408433	<43	SET after blastocyst biopsy versus DET of unscreened blastocysts (qPCR)	All indications ≥ 2 blastocyst for biopsy	89 PGS 86 control	31%	60.7 PGS versus 65.1 (NS)	11.5 PGS versus 20.0 (NS)
Scott <i>et al.</i> , 2013a, b NCT01219283	21-42	Blastocyst biopsy versus blastocyst transfer	All indications ≤ I failed IVF	72 PGS 83 control	28.6%	84.7 PGS versus 67.5 (P = 0.01)	1949 1970
Schoolcraft et al., ASRM 2012	>35	Fresh blastocyst transfer versus frozen blastocyst biopsy (SNP microarray)	AMA	47 PGS 41 control	-	74.5 PGS versus 53.7 (P < 0.05)	-
Rubio et al., ESHRE 2014 NCT01571076	38-41	D3 biopsy with blastocyst transfer versus blastocyst transfer (Array CGH)	AMA <2 miscarriages <2 IVF failures	75 PGS 86 control	77.9%	42.7 PGS versus 25.6 (P = 0.0294)	3.3 PGS versus 43.6 (P < 0.0001)
ESHRE Study for Oocyte Euploidy (ESTEEM) NCT01532284	36-41	Polar body biopsy (Array CGH)	AMA Recruiting				
Yilun Siu and Shangai Ji Ai Genetics & IVF Institute NCT02223221	18–35	Blastocyst biopsy versus blastocyst transfer (Array CGH)	RPL ≥ 3 miscarriages Recruiting	"	Incroase		D
Rubio IVI NCT01571076	<38	D3 biopsy with blastocyst transfer versus blastocyst transfer (Array CGH)	Severe male factor <2 million sperm/ml Recruiting	"	Reductio	on in Abortion	
Munne Reprogenetics NCT01946945	22-42	Blastocyst biopsy versus blastocyst transfer (NGS)	All indications Recruiting	"	Reduction	on in TTP	
Scott RMANJ NCT02032264	18–42	DET blastocyst biopsy (NGS)	≤ I prior failed IVF Recruiting				

CGH, comparative genomic hybridization; SNP, single nucleotide polymorphism; SET, single-embry o transfer; qPCR, quantitative PCR; NGS, next-generation sequencing; PGS, preimplantation genetic screening; AMA, advanced maternal age; RPL, recurrent pregnancy loss; MR, miscarriage rate.

RCT - Done & Ongoing

Table II RCTs using comprehensive chromosome screening.

Authors	Female age (years)	Intervention	Eligibility	No. of cycles	% Abnormal embryos	Ongoing PR/cycle or delivery rates	MR
Yang et al., Mol Cytogenet 2012	<35	SET after blastocyst biopsy versus blastocyst transfer (Array CGH)	Young good prognosis, IVF patients, first cycle, no prior miscarriage	55 PGS 48 control	44.9%	69.1 PGS versus 41.7 (P = 0.0009)	2.6 PGS versus 9.1 (NS)
Forman et al., Fertil Steril 2013 NCT01408433	<43	SET after blastocyst biopsy versus DET of unscreened blastocysts (qPCR)	All indications ≥ 2 blastocyst for biopsy	89 PGS 86 control	31%	60.7 PGS versus 65.1 (NS)	11.5 PGS versus 20.0 (NS)
Scott et al., 2013a, b NCT01219283	21-42	Blastocyst biopsy versus blastocyst transfer	All indications ≤ I failed IVF	72 PGS 83 control	28.6%	84.7 PGS versus 67.5 (P = 0.01)	-
Schoolcraft et al., ASRM 2012	>35	Fresh blastocyst transfer versus frozen blastocyst biopsy (SNP microarray)	АМА	47 PGS 41 control	-	74.5 PGS versus 53.7 (P < 0.05)	-
Rubio et al., ESHRE 2014 NCT01571076	38-41	D3 biopsy with blastocyst transfer versus blastocyst transfer (Array CGH)	AMA <2 miscarriages <2 IVF failures	75 PGS 86 control	77.9%	42.7 PGS versus 25.6 (P = 0.0294)	3.3 PGS versus 43.6 (P < 0.0001)
ESHRE Study for Oocyte Euploidy (ESTEEM) NCT01532284	36-41	Polar body biopsy (Array CGH)	AMA Recruiting			1	C.0
Yilun Siu and Shangai Ji Ai Genetics & IVF Institute NCT02223221	18-35	Blastocyst biopsy versus blastocyst transfer (Array CGH)	RPL ≥ 3 miscarriages Recruiting				
Rubio IMI NCT01571076	<38	D3 biopsy with blastocyst transfer versus blastocyst transfer (Array CGH)	Severe male factor <2 million sperm/ml Recruiting				
Munne Reprogenetics NCT01946945	22-42	Blastocyst biopsy versus blastocyst transfer (NGS)	All indications Recruiting				
Scott RMANJ NCT02032264	18-42	DET blastocyst biopsy (NGS)	≤ I prior failed IVF Recruiting				

CGH, comparative genomic hybridization; SNP, single nucleotide polymorphism; SET, single-embry o transfer; qPCR, quantitative PCR; NGS, next-generation sequencing; PGS, preimplantation genetic screening; AMA, advanced maternal age; RPL, recurrent pregnancy loss; MR, miscarriage rate.

Oocyte Cryopreservation

Article

Highly efficient vitrification method for cryopreservation of human oocytes

Masashige Kuwayama (PhD) is currently the Scientific Director of Kato Ladies' Clinic (Tokyo, Japan), the world's largest IVF unit. In 1986, he began work in the field of embryology with Dr Hanada. They developed assisted reproduction techniques (IVM, IVF, vitrification, embryo culture, ES cell) and established a bovine embryo mass production system as the leader of a National Project in Japan in 1990. He obtained the first calves after oocyte vitrification, IVF, invitro culture and blastocyst transfer in 1992. He moved to human IVF in 1999, developed the Cryotop vitrification method for human oocytes and established the first human oocyte bank in 2001. The first babies following oocyte vitrification in USA and Japan were obtained by his group using the Cryotop method. He is also interested in rejuvenescence of old defective oocytes, and obtained the first calf from old infertile cattle with germinal vesicle transfer in 2002.

Dr Masashige Kuwayama

Masashige Kuwayama^{1,4}, Gábor Vajta², Osamu Kato¹, Stanley P Leibo³

¹Kato Ladies' Clinic, Tokyo 160–0023, Japan; ²Population Genetics and Embryology, Department of Genetics and Biotechnology, Danish Institute of Agricultural Sciences, Research Centre Foulum, DK-8830 Tjele, Denmark; ³Audubon Centre for Research of Endangered Species, Department of Biological Sciences, University of New Orleans, New Orleans, LA 70131, USA

Table 4. In-vivo development of the vitrified human oocytes after embryo transfer on day 2 and day 5. ET = embryo transfer.

Day of ET (no. embryos/ET)	No. of ET (no. embryos)	No. (%) of pregnancies	No. of deliveries ^a	No. of ongoing pregnancies
2 (2)	1 (2)	1 (100)	0	0
2 (3)	17 (51)	6 (35.3)	4	1
5 (1)	11 (11)	5 (45.5)	3	2
Total	29 (64)	12 (41.3)	7	3

^aTake-home babies.

RCTs on Oocyte Cryopreservation

Table 1

Randomized controlled trials with clinical outcomes on oocyte cryopreservation

		Mean age at			Number of	Number of	Mean	Day	SR	FR	IR	CP/T	LB/T
Author	Study design	freezing	Target population	Method	patients	oocytes	embryos	transfer	(%)	(%)	(%)	(%)	(%)
Nondonor - slow freezing	y versus vitrification												
Smith et al. United States	Randomization appropriate for comparing both embryological and clinical outcome	31 ± 1	Infertile patients who failed in the fresh cycle and had >9	SF	30	238	3.2	3	67	67	11.5	21.1 ^b , ^c	NA
[18]			supernumerary oocytes										
		32 ± 1		VF	48	349	3.1	3	81	77	13.7	38.3 ^{<u>b</u>,<u>c</u>}	NA
Nondonor - fresh versus v	vitrified oocytes												
Rienzi et al.ª Italy [19]	Randomization appropriate for comparing embryological not for clinical outcome	35.5 ± 4.8	IVF patients <43 years old with >6 MII oocytes at retrieval	VF	40	124	2.3	2	96.8	79.2	20.4	38.5	30.8
													(OPR)
				Fresh	40	120	2.5		NA	83.3	21.7	43.2	38.8
													(OPR)
Parmegiani et al. ^a Italy	Randomization appropriate for comparing embryological not for clinical outcome	35.0 ± 0.8	IVF patients <42 years old with >5 MII oocytes at retrieval	VF	31	168	2.5	2–3	89.9	84.9	17.1	35.5	22.6
[20]													
				Fresh	31	NA	2.6		NA	88.3	NA	13.3	0
Forman et al. United	Randomization appropriate for comparing clinical outcome	29.9 ± 2.3	IVF patients <35 years old with >8 MII oocytes undergoing	VF	44 (26 paired	294	NA	5–6	81.6	77.9 ^b	NA	NA	53.9
States [21]			their first IVF cycle		transfers)								(OPR)
				Fresh	44 (26 paired	294	NA		NA	90.5 <u>b</u>	NA	NA	57.7
					transfers)								(OPR)
Donor - fresh versus vitri	fied oocytes												
Cobo et al. Spain [22]	Randomization appropriate for comparing embryological not for clinical outcome because embryo recipients	26.7 ± 3.6	Oocyte donors	VF	30	231	3.8	3	96.7	76.3	40.8	65.2	47.8
	are not randomized in this study												(OPR)
				Fresh	30	219	3.9		NA	82.2	100	100	100
-													(OPR)
Cobo et al. Spain [15]	Randomization appropriate for comparing clinical outcome	26.7 ± 3.9	Oocyte donors	VF	295	3286	1.7	3	92.5	74.2	39.9	55.4	49.1
		26.6 ± 3.8		Fresh	289	3185	1.7		NA	73.3	40.9	55.6	48.3

CP/T, clinical pregnancy/transfer; FR, fertilization rate; IR, implantation rate; LB/T, live birth/transfer; SF, slow-freezing; SR, survival rate; VF, vitrification.

^asibling oocytes from the same patients were randomized.

^bsignificantly different.

^cCP/thaw cycle.

Cil AP, Seli E. Curr Opin Obstet Gynecol. 2013

ICSI for All?

Advantages

- ["] Standardization & task organization in ART labs
- " Uniformity (variability, checkpoints in time-lapse)
- "Mastering" the technique for personnel training in other invasive procedures (blastomere & trophectoderm biopsy, assisted hatching, fragment removal, cytoplasmic transfer, etc.)

Disadvantages

- " Overlapping tasks overwhelming
- "Burden to human resources
- Security? (physiological barriers bypassed)
- Follow up in high risk population confusing
- Cost-efficacy?
- " No evidence of benefit in CPR, IR or LBR

IVF ICSI Modern Trends

Human Reproduction, Vol.28, No.5 pp. 1375-1390, 2013

Advanced Access publication on February 26, 2013 doi:10.1093/humrep/det036

human reproduction ORIGINAL ARTICLE Reproductive epidemiology

International Committee for Monitoring Assisted Reproductive Technologies (ICMART) world report: assisted reproductive technology 2004[†]

E.A. Sullivan^{1,*}, F. Zegers-Hochschild², R. Mansour³, O. Ishihara⁴, J. de Mouzon⁵, K.G. Nygren⁶, and G.D. Adamson⁷

Table 1. Assisted Reproduction technology procedures and access in 2012									
Country	Number of clinics		Assisted	reproductive teo	chniques				A (****)
Country	Number of clinics	IVF/ICSI initiated cycles (*)	IVF (**)	ICSI (**)	FET(***)	OD	FP(****)	Total	Access (*******)
Argentina	25	6,461	504	5,515	3,027	1,543	429	11,031	1,193
Bolivia	1	215	148	62	14	8	923	237	96
Brazil	57	16,030	1,070	13,937	4,252	1,170	0	21,452	447
Chile	8	1,563	131	1,321	549	197	48	2,309	595
Colombia	11	977	293	622	262	247	13	1,486	139
Ecuador	6	608	216	324	165	154	107	927	254
Guatemala	1	100	38	62	7	17	0	124	37
Mexico	27	3,345	1,222	2,017	1,046	1,140	114	5,531	196
Nicaragua	1	91	46	41	0	9	0	100	67
Panama	1	245	7	192	86	33	9	364	452
Peru	6	1,264	298	875	430	547	114	2,241	308
Dominican R.	2	80	42	35	5	26	0	111	48
Uruguay	2	293	20	233	77	46	2	416	585
Venezuela	7	585	369	184	153	259	5	997	148
Total	155	31,857	4,404	25,420	10,073	5,396	1,764	47,326	367.0

REDLARA 2012

(*) initiated cycles; (**) oocyte pick ups; (***) includes the transfer of own and donated oocytes; (****) initiated fertility preservation cycles; (****) number of cycles/million of women 15-45 years

ICSI has become a tool

ICSI Past & New Indications

- Severe Oligoasthenozoospermia
- Use of testicular or epidydimal sperm
- Antisperm antibodies
- Repeated IVF failure
- Use of cryopreserved sperm
- Ejaculatory dysfunction
- PGD for monogenic diseases
- PGS with CCS for aneuploidy screening
- Time-lapse?
- Cryopreserved oocytes
- Poor responders (just in case...)

Pregna Medicina Reproductiva 2012-2015 Unselected Population									
Procedure	IVF	ICSI	р						
N	1319	1388							
# oocytes	9567 (7.25)	11548 (8.3)							
M2 oocytes	7796 (81.5%)	8301 (71.9%)							
M2 used	7633	8124							
FR	5389/7633 (70.6%)	5093/8124 (62.7%)	<0.0001						
# transfers	968	990	0.24						
# embryos transferred	1.79	1.79	NS						
+ bhCG	379/968 (39.2%)	344/990 (34.7%)	0.04						
Clinical Pregnancy	312/968 (32.2%)	291/990 (29.4%)	0.18						
Implantation	347/1732 (20%)	340/1777 (19.1%)	0.52						
0% fert (>1 M2)	97/1319 (7.3%)	132/1388 (9.5%)	0.04						
0% fert (>3 M2)	10/1319 (0.7%)	28/1388 (2.01%)	0.005						

Embryo Transfer: A Critical Step

Single Embryo Transfer

Number of embryos for transfer following in vitro fertilisation or intra-cytoplasmic sperm injection (Review)

Pandian Z, Marjoribanks J, Ozturk O, Serour G, Bhattacharya S

- Pregnancy rate is lower sET vs. DET
- Cumulative PR (2 fresh or 1 fresh + 1 FET) similar
- Multiple pregnancies are significantly reduced

Freeze-all Strategies

- More "physiological" endometrium
- OHSS
- Progesterone rises
- PGS
- Could improve PR: data still not convincing, need more N

Neonatal and Infant Follow Up

- The incidence of major birth defects, in newborns born after ICSI treatments is 3-4%, in the same range as in the general population. Bonduelle 2002;
 Palermo 2000; Van Steirteghem 1998
- " Hansen in 2002 found an incidence of major birth defects of 9% (almost double than in the general population) in newborns after ICSI, but the same risk in newborns after conventional IVF cycles
- Structural autosomic anomalies (0,36%) and de-novo sex chromosome anomalies (0,83%) are slightly but significantly elevated in newborns after ICSI, but NOT in IVF. te Velde 1998; Van Steirteghem 2002

Neonatal and Infant Follow Up

- ["] There is also an increase, compared to the general population, in birth defects in boys born after ICSI treatments, probably inherited through the paternal pathway. Van Steirteghem 2002
- ⁷ Davies, in 2012 found an increase in birth defects of newborns from assisted conception cycles (8.3% vs. 5,8% in the general population), RR 1.26 for IVF and 1.77 for ICSI, but after adjusting for parental factors, de RRs were 1.07 y 1.57

Figure 6 Schematic of an embryo culture system for perfusion culture and analysis of biomarkers. Culture media are continuously passed over the embryo(s). The composition of the culture media can be changed according to the specific requirements of each stage of embryonic development. Toxins, such as ammonium, are not able to build up and impair embryo development, while more labile components of the culture system are not denatured. Samples of culture media can be removed for biomarker analysis. Adapted from Gardner (1994).

Diagnosis of human preimplantation embryo viability

David K. Gardner^{1,*}, Marcos Meseguer², Carmen Rubio³, and Nathan R. Terrify. *Human Reproduction Update*, Vol.21, No.6 pp. 727. 747, 2015

Embryo Culture Non invasive Selection

Where We Are and Where We Are Going: The Future of ART

Dr. Marcos Horton Co-Director and Founder Pregna Medicina Reproductiva Past-President, Argentinian Society for Reproductive Medicine Buenos Aires, Argentina

